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Abstract. The infinitesimal canonical transformations of generalised Hamiltonian equations 
are discussed in this paper. It is shown that for the generalised Hamiltonian equations 
U, = DSH/Gu, the infinitesimal canonical transformations are also the Noether trans- 
formations, and both the approach in the Hamiltonian formalism and the one in the 
Lagrangian formalism lead to the same conserved densities. 

1. Introduction 

Studies of symmetries and conservation laws of physical systems have always been one 
of the central topics in physics. As is well known, the symmetries and conservation laws 
are closely related to each other. In past years, with the discovery that an infinite 
number of conservation laws could be found for a great variety of nonlinear wave 
equations, there has been a new surge in the study of symmetries and conservation laws 
(see e.g. Kumei 1975, 1977, 1978, Ibragimov 1976, 1977, Ibragimov and Anderson 
1976, Crampin 1977, Dodd and Bullough 1977, Olver 1977, Wadati 1978, Abellanas 
and Galindo 1979,1981, Fuchssteiner 1979, Shadwick 1979,1980, Tu and Qin 1979, 
1981a, Fujimoto and Watanabe 1980, Guerrero and Martinez Alonso 1980, Tu 1980, 
1981). 

This paper is divided into two parts. In 0 2 the notations for generalised Hamil- 
tonian equations (Lax 1978, Martinez Alonso 1979) are briefly sketched, and then the 
definition of infinitesimal canonical transformations is extended from ordinary Hamil- 
tonian equations to generalised ones. It is shown that the following important result 
(Goldstein 1951) remains valid in the generalised cases: 

the generator of an infinitesimal canonical transformation which 
leaves invariant the Hamiltonian is a conserved density. (1.1) 

ut = DSH/Gu (1.2) 

In § 3 the generalised Hamiltonian equations 

are considered and it is shown that this equation can be reduced, by setting U = &, to an 
Euler-Lagrange equation with a Lagrangian density L, and the connection between L 
and H is similar to the classical Legendre transformation. Furthermore, the 
infinitesimal canonical transformation with generator G is also shown to be a Noether 
transformation and the same conserved density follows from both approaches, that is, 
from proposition (1.1) in the Hamiltonian formalism or from the Noether theorem in 

0305-4470/82/010277 + 09$02.00 @ 1982 The Institute of Physics 277 



278 G-Z TU 

the Lagrangian formalism. It may be noted that in spite of the continuous progress of 
the two approaches connecting conserved densities with symmetries, there are few 
works, at least to the author's knowledge, revealing the relation between the two 
approaches, and we hope the result of this paper could be extended to the more general 
Hamiltonian equation U, = JSH/Su. In 9 3 there is an open problem in this connection. 

2. Generalised Hamiltonian equations and infinitesimal canonical transformations 

As is well known, the ordinary classical Hamiltonian equation (for continuous media) 
reads 

api/at  = -sH/sqi, dqi/dt = SH/Spi, i = 1, . . , , Iz, (2.1) 

where S / S p  and S/Sq denote the variational derivatives (Coelho de Souza and Rodri- 
gues 1969, Kruskal et al 1970, Gel'fand and Dikii 1975, Galindo and Martinez Alonso 
1978, Aldersley 1979, Tu and Qin 1979, 
4 1 , .  . . , q,IT and 

where T represents the transpose, and I ,  
rewrite equation (2.1) in the concise form 

ut = J,SH/Su. 

1981a, Tu 1980). Setting U = (p l ,  . . . , p,,, 

is the identity matrix of order n, we may 

(2.2)' 

In this ordinary case the Poisson bracket of equation (2.1) is defined by 

which can be written as 

{F, G }  = (SF/Su)TJ,(SG/Su). (2.3)' 

Definition 1. (Lax 1978, Martinez Alonso 1979, Tu 1980) The equation 

ut = JSH/Su (2.2) 

is called a generalised Hamiltonian equation if the operator J is linear and anti- 
symmetric, i.e. ( J U ) ~ U ~  - uT(Ju), where U = ( U  , . . . , U ) , U' = u i ( x l ,  . . . , XN, t ) ,  
S/Su = ( S / S u ' ,  . . . , S/SuM)T and 

1 M T  ' 

and fe g means f -g = Xi Dihi for some vector h = (hi, . . . , hN)*. The Poisson bracket 
of the generalised Hamiltonian equations (2.2) is defined by an equation similar to 
equation (2.3)': 

{F, G }  = (SF/Su)TJ(SG/Su). ( 2 . 3 )  



Transformations of Hamiltonians 279 

A scalar function f = f ( u ,  u'l', . . , , u ' ~ ) ) ,  which depends on u(x,  t )  and its space deriva- 
tives u'k)={u~l...ik)l is called a conserved density of equation (2.2) if df/dtE0 holds 
when u(x,  t )  is taken to be the solution of equation (2.2). 

Note that here and sometimes below we work up to equivalence with respect to D as 
in, for example, Dodd and Bullough (1977). This kind of calculation enables us to 
deduce in a pure algebraic manner, and is also reasonable because under some 
appropriate conditions, such as u(x,  t )  and all its space derivatives vanishing at the 
boundary, an equation ge 0 would be equivalent to 5 g dx = 0. Thus in this case a 
conserved density f will correspond to a constant of motion (or 'first integral') 
I = If dx =constant. Likewise the equation ( J U ) ~ U ~  -uT(Ju) would be the same as 
(Ju, U) = - (U ,  Ju) with (U, U) being the inner product ( U ,  U) = 5 uTu dx. The following 
formula (integrate by parts) will be frequently used in this connection: f (Dg) -g(Df) ,  
where D = Di or D = d/dx in the case of one space dimension. 

Some typical examples of the generalised Hamiltonian equations are as follows. 

Korteweg-de Vries ( K d V )  equation ut = uu, + uxxx. 

J = D = d/dx, H = u 3 / 6 - u f / 2 .  

2 Modified KdV equation U t  = U ux + uxxx. 

J = D ,  H = u4/12 - ~ : / 2 .  

Sine-Gordon equation qr;-qxx =sin q. 

Sine-Gordon equation (in the light-cone coordinate) uxf = sin U .  

J = D - l ,  H = -cos U .  

Nonlinear Schrodinger equation qr = i(qXx + )q12qx). 

J=J1, H = i(q2p2/2 - qXpx) 

( p  = q* the complex conjugate of q, U = ( p ,  q)T) ,  

Regular long wave equation (Lax 1978) U t  = U ,  + uu, + U-,. 

J=D(1-D2)- ' ,  H = u2/2+ u f / 2 .  

In ordinary classical mechanics, we call the infinitesimal transformation 

U ' =  U + E l ) ,  (2.4) 
T T where U = (pl ,  . . . , qn)  and q = (vl,. . . , vZn) , a canonical or symmetric trans- 

formation of equation (2.1), if equation (2.1) remains form invariant under the 
transformation. In particular, if in the case of a discrete system there exists a G such 
that 

p i  =pi-EaG/aqi, 4:  = qi + EaG/ap i ,  (2.5) 
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then G is called a generator of the transformation (2.5) (Goldstein 1951). In the case of 
continuous media we may use SG/Sqi and SGfSpi instead of dG/dqi and aG/dpi 
respectively; then equation (2.5) can be written as 

U' = U + &J,SG/Su. 12.6)' 

In the case of the generalised Hamiltonian equation (2.2) the similar equation 

U' = U + &JGG/Su (2.6) 

is taken as the definition of infinitesimal canonical transformations if equation (2.2) 
remains form invariant under this transformation, in which case G will likewise be 
called a generator. 

We have proved the following (Tu and Qin 1979, Tu 1980). 

Theorem A .  If G is a conserved density of the generalised Hamiltonian equation (2.2), 
then the infinitesimal transformation (2.6) is canonical or equivalently symmetric. The 
converse is true if J is invertible. 

Note that when J = J,, as in ordinary cases, the operator J is certainly invertible. 
However, J may be taken to be other operators, not necessarily matrix, such as 
J = D = d/dx, which can be also made invertible (Lax 1968, Olver 1977), if we restrict 
the domain of D to be functions F ( u )  with F(0)  = 0, since then D F ( u )  = 0 would imply 
F ( u )  = 0. Therefore in these two most important cases we have: 

Theorem A' 

G is a conserved density of e (2.6) is canonical, or equivalently 
equation (2.2) symmetric transformation of equa- 

tion (2.2). 

Let (Tu 1980) 

a r ; l l . . . i k  = a la& ,... i k  

and for f = ( f ' ,  . . . , fM)T, set 

V,(f') ZZ 1 ( a ? ; i l . . . i k f s ) D i k  ' ' Dik' 
k i l  ... ik 

Here and below, notations such as F, G, f, g, etc all denote smooth (scalar or vector) 
functions of U and its space derivatives and these functions will be assumed to be 
implicitly dependent on xl, . . . , x N  and t. 

It is easy to see from the definition that for U = u(t ,  x, E )  

df/ds = V( f)du/ds. 

In particular 

(dldE)f(u + & v ) I ~ = ' - o =  VCfh 

(2.7 

t2.8 
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and for solutions u of equation (2.2), 

ff = V(f)JSH/Su. (2.9) 

Furthermore, for scalar functions f =f(u) and vector g we have 

V(f )gD ( S f / W T g .  (2.10) 

ff = V( f)JSH/SuE (S~ /SU)~JSH/SU = { f ,  H }  

From equations (2.9) and (2.10) we find that 

(2.1 1) 

holds for solutions u of equation (2.2), and from equations (2.8) and (2.10) the variation 
SF of a function F(u) under the infinitesimal transformation (2.6) will be 

SF =F(u + &JSG/Su)-F(u) 

= E[(d/d&)F(u + &JSG/Su)]l,=o = &V[F(u)VSG/Su 

e E ( ~ ~ / ~ ~ ) T ~ ~ ~ / ~ ~  = E{F, G} .  (2.12) 

From theorem A and equations (2.11) and (2.12) we deduce: 

Proposition 1. Suppose that J is invertible; then the Hamiltonian H of the generalised 
equation (2.2) remains invariant under the infinitesimal canonical transformation (2.6), 
that is, 

SH = H ( u ‘ ) -  H ( u ) ~ o .  (2.13) 

Here and below we shall follow the usual convention that equations such as f(u’) 
= 0, g(u ’ )  L? 0, which involve the infinitesimal transformation (2.6), will be considered 
true up to order O(E) .  Hence f (u’ )=O means f ( u ’ ) = O ( ~ ~ ) ,  and (2.13) means 
S H ~ O ( E ~ )  and so on. 

Proof. From equation (2.12) we have SHEE{H,  G} ,  and by theorem A and the 
hypothesis, G is a conserved density of equation (2.2), that is, G,E 0, hence by equation 
(2.1 1) it holds that {H,  G }  2 0, and consequently SHE 0 as desired. 

Note that the equations (2.11), (2.12) and (2.13) are generalisations of the cor- 
responding results in ordinary classical mechanics. 

3. Canonical transformation as Noether transformation 

In this section we consider the generalised Hamiltonian equations 

ut = DSH/Su, (3.1) 

where U = U ( X ,  t )  is a scalar function of a one-dimensional space variable x and time 
variable f, and D = d/dx. The well known KdV and modified KdV equations and the 
related higher-order families (Lax 1968, Olver 1977, Chern and Peng 1979) can all be 
written as equation (3.1). Other equations, such as the Kodemtzev-Petriashvili equa- 
tion (Zakharov and Schulman 1980), also belong to this type. 

The corresponding infinitesimal canonical transformations of equation (3.1) are 

U ’  = U f EDSGISU. (3.2) 
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By theorem A ,  to every such a canonical transformation, there is a related conserved 
density G. 

An open problem. We have proved (Tu 1979) that for the higher-order KdV and 
modified equations, all the infinitesimal symmetry transformations U‘ = U + E ~ I ,  with 17 
being polynomials of ui =Diu,  take the form of (3.2). Does this hold for the more 
general equations 

(3.3) 

where p < n? 
It is easy to prove that (see, e.g. Tu and Qin 1981b) equation (3.1) in its original form 

cannot be written as an Euler-Lagrange equation of some variational 
problem. However, a simple substitution U = 4, is sufficient to this end. 

ur = ~ 2 n + 1  +DSf(u, . . . , U p ) / S U ,  

Proposition 2. Set U = 4, and 

L = 4x4112 - H i d ,  1. 
Then 

(3.4i 

U , = D S H / S U ~ ~ , , = - S H ( ~ , ) / S ~ ~ ~ L / S ~  = O ,  

where the variational derivative 8/84 is taken with respect to both x and t, that is, 

ak 4.  . = 
a 8 

84 kit  ... ik a4i 1...ik ’ ax,, . . . ax,, ’ - 1 ( - l ) k D ; l . .  .Dj,----- I ,  ... 1k _- 

with i, = 0 or 1, and xo = t, XI = x. 

Proof. Note that for H = H ( u )  = H(C$~), it holds that 

hence by setting U =4,  in equation (3.1) we obtain 4x,=D8H(4x)/84x 
= - 8 H ( 4 x ) / & # J ,  that is, U, = D S H / S u e 4 , ,  = -SH/S4. Furthermore 8L/Sq5 
= ~ / 8 ~ ( ~ , ~ l / 2 ) - ~ / l S ~ H ( ~ , ) = - ~ , r - 8 H / S ~  and thus 8/84 = L = O @ 4 x ,  = 
-8H/Sd, which completes the proof. 

Equation (3.4) is quite similar, by setting q = 4, p = +,, to the Legendre transformation 
in ordinary classical mechanics, which reads 

L = 1 p i a q i / a t  - H.  

Thus, equation (3.4) may be viewed as a Legendre transformation of the generalised 
Hamiltonian equation (3.1). 

After the substitution U = 4, and U ’  = 4:, the infinitesimal canonical transformation 
(3.2) is reduced to 

4: = 4, + EDSG(dx)/Wx (3.5) 

or (b’= 4 + ESG/S~,  +constant. Here, as in Wadati (1978), we assume that 4 -* 
constant (independent of t ) ,  as 1x1 -* 03. Hence 

(3.6) 4’t = 4r + E ( a G ( 4 x ) I W x ) r .  
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Now we recall briefly the definition of a Noether transformation and the classical 
Noether theorem (Hill 1951). Consider the infinitesimal transformation 

x‘ = x + €6, t’ = t + ET, 4 ’ = 4 + w ,  (3.7) 

and let L be a Lagrangian density corresponding to some Euler-Lagrange equation. If 
the variation SL of L under the transformation (3.7) is a divergence, 

S L = L ( ~ ’ ,  t‘, 4 ! ) - ~ ( ~ ,  t, 4 ) =  &(oZt+rx), 
then the transformation (3.7) is called a Noether transformation. According to the 
Noether theorem, conserved densities can be constructed in connection with the 
infinitesimal Noether transformations. Moreover, Steudel(l975) has pointed out that 
one further simplification could be made in so doing, that is, the general transformation 
(3.7) can be reduced to 

x’ = x, t’ = t, f.p’=($+&q. (3.8) 

T = (aL/&&,).~.l- 2 0. (3.9) 

In this simple case the Noether theorem reads 

Proposition 3. If (3.2) is an infinitesimal canonical transformation of equation (3.1), 
then (3.5) is an infinitesimal Noether transformation of the equation 

4 x t  = - S H ( 4 x ) / M *  (3.10) 

Moreover, the conserved density associated with this transformation according to the 
Noether theorem is just G. 

Proof. Setting SL=L(4’)-L(4) ,  we have 

SL = ( 4 3  ; - 4x4,)/2 - w(4:) - H(4x)I. 
Now by proposition 1 SH = H ( 4 : )  - H ( & )  2 0, and 

(4;4; - 4 d m  
= C 4 x  + E (SG/Wx)xI[4r + E (SG/Wx)tI/2 -4x4 t /2  
= E ((SG/Wx)x4t) + [(SG/Wx)&I/2 

= ~[((SG/Wx)4r)x + ((aG/Wx)4x)t -2(aG/Wx)4xtl/2 

~[((SG/Wx)dx)t/2 - (aG/Wx)4xtl 

~[((SG/Wx)4.x)t/2-C (aG/a4i+dDi4xtl (4i = o i 4 )  

= ~(((aG/S4xMx)/2- G)t, 
which shows that the transformation (3.5) is indeed a Noether transformation; 
moreover, the corresponding conserved density according to equation (3.9) is 

T =&S4/2-n= [q5X(SG/Sq5x)/2+constant 4,]-[&(SG/S4,)/2- GI 

= G +constant G. 

Two conserved densities will be usually considered the same, if they differ from each 
other only by a term of total x-derivatives. The proof is thus complete. 
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Proposition 4. Let U = U ( U ,  u l ,  . . . , u p )  and ai = a/auj, 8; =a/&,  where as above ui = 
D i u  and ui = D i u ;  then 

(3 .11)  

where 

with (1) denoting the binomial coefficients (Kruskal et a1 1970, Galindo and Martinez 
Alonso 1978, Aldersley 1979, Tu and Qin 1981b). 

Proof. From the identity aiD' = X (:)D'-kai. k (Kruskal et a1 1970), we have 

Making use of the identity 

we deduce that 

The proof is complete. 

This proposition is useful in relating two different canonical transformations of 
generalised Hamiltonian equations. For example, the KdV equation ut = uc1 + u3 and 
the MKdV equation ut = u2u1 + u3 are related to each other by the well known Miura 
transformation v = u2+pu1, p = J-6, and from the above proposition it is easy to 
deduce that S/6u = (224 - pD)S/Sv ,  from which we can obtain that 

( 2 ~  +pD)DS/Gu = 6 R ~ ( v ) D 6 / 6 ~  (3 .12)  

where &(U) = D2+ 2 4 3  + u l D - ' / 3  is the recursion operator of the KdV equation 
(see Olver 1977). Equation (3.12) can then be used to establish a definite relation 
6f&)(u)  =f ( : - ' ) (u )  between the canonical transformations of the KdV equation V '  

= U + ~DSfg)(u)/Su and those of the MKdV equation U '  = U + eDSfjl;'(u)/Su, where 
D S f g ' ( u ) / S u  = ( R K ( ~ ) ) n ~ l  and DSf&'(u)/Su = (RM(u))"ul  with & ( U )  

= D 2 + 2 u 2 / 3 + 2 ~ 1 D - 1 ~ / 3  (Olver 1977). The details of the above and related cal- 
culations will be published elsewhere. 
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